The Attribute Optimization Method Based on the Probability Kernel Principal Component Analysis and Its Application

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Principal Component Analysis

A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can e ciently compute principal components in high{ dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d{pixel products in images. We give the derivation of the method and present experimenta...

متن کامل

Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis

Article history: Received 15 December 2011 Received in revised form 28 June 2013 Accepted 5 July 2013 Available online 16 July 2013

متن کامل

Image Modeling based on Kernel Principal Component Analysis

This article presents a method for estimating a generative image model based on Kernel Principal Component Analysis (KPCA). In contrast to other patch-based modeling approaches such as PCA, ICA or sparse coding, KPCA is capable of capturing nonlinear interactions between the basis elements of the image. The original form of KPCA, however, can be only applied to strongly restricted image classes...

متن کامل

Robust Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...

متن کامل

Streaming Kernel Principal Component Analysis

Kernel principal component analysis (KPCA) provides a concise set of basis vectors which capture nonlinear structures within large data sets, and is a central tool in data analysis and learning. To allow for nonlinear relations, typically a full n ⇥ n kernel matrix is constructed over n data points, but this requires too much space and time for large values of n. Techniques such as the Nyström ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Oil, Gas and Coal Engineering

سال: 2019

ISSN: 2376-7669

DOI: 10.11648/j.ogce.20190701.11