The Asymptotic Behavior of Solutions of a Quasilinear Degenerate Parabolic Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term

This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.

متن کامل

The Asymptotic Behavior of the Solutions of Degenerate Parabolic Equations

Existence of stationary states is established by means of the method of upper and lower solutions. The structure of the solution set is discussed and a uniqueness property for certain classes is proved by a generalized maximum principle. It is then shown that all solutions of the parabolic equation converge to a stationary state.

متن کامل

Global Asymptotic Behavior of Solutions of a Semilinear Parabolic Equation

We study the large time behavior of solutions for the semilinear parabolic equation ∆u+V up−ut = 0. Under a general and natural condition on V = V (x) and the initial value u0, we show that global positive solutions of the parabolic equation converge pointwise to positive solutions of the corresponding elliptic equation. As a corollary of this, we recapture the global existence results on semil...

متن کامل

Asymptotic Behavior of a Class of Degenerate Parabolic Equations

and Applied Analysis 3 2.1. Functional Spaces The appropriate Sobolev space for 1.1 is H 0 Ω , defined as a completion of C ∞ 0 Ω with respect to the norm

متن کامل

Asymptotic behaviour of solutions of quasilinear parabolic equation with Robin boundary condition

In this paper we study solutions of the quasi-linear parabolic equations ∂u/∂t −∆pu = a(x)|u|q−1u in (0, T ) × Ω with Robin boundary condition ∂u/∂ν|∇u|p−2 = b(x)|u|r−1u in (0, T ) × ∂Ω where Ω is a regular bounded domain in IRN , N ≥ 3, q > 1, r > 1 and p ≥ 2. Some sufficient conditions on a and b are obtained for those solutions to be bounded or blowing up at a finite time. Next we give the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1993

ISSN: 0022-0396

DOI: 10.1006/jdeq.1993.1020