The Archimedean property in an ordered semigroup
نویسندگان
چکیده
منابع مشابه
A Generalized Archimedean Property
We introduce and discuss a condition generalizing one of the Archimedean properties characterizing parabolas. Archimedes was familiar with the following property of parabolas: If for any two points A, B on a parabola we denote by S the area of the region between the parabola and the secant AB, and by T the maximum of the area of the triangle ABC, where C is a point on the parabola between A and...
متن کاملMeasurement representations of ordered, relational structures with archimedean ordered translations
© Centre d’analyse et de mathématiques sociales de l’EHESS, 1988, tous droits réservés. L’accès aux archives de la revue « Mathématiques et sciences humaines » (http://msh.revues. org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou...
متن کاملMeasurement Structures with Archimedean Ordered Translation Groups
The paper focuses on three problems of generalizing properties of concatenation structures (ordered structures with a monotonic operation) to ordered structures lacking any operation. (1) What is the natural generalization of the idea of Archimedeaness, of commensurability between large and small? (2) What is the natural generalization of the concept of a unit concatenation structure in which t...
متن کاملArchimedean - like Classes of Lattice - Ordered Groups
Suppose <? denotes a class of totally ordered groups closed under taking subgroups and quotients by o-homomorphisms. We study the following classes: (1) Res (£?), the class of all lattice-ordered groups which are subdirect products of groups in C; (2) Hyp(C), the class of lattice-ordered groups in Res(C) having all their ¿-homomorphic images in Res(<?); Para(C), the class of lattice-ordered gro...
متن کاملPoincaré Semigroup Symmetry as an Emergent Property of Unstable Systems
The notion that elementary systems correspond to irreducible representations of the Poincaré group is the starting point for this paper, which then goes on to discuss how a semigroup for the time evolution of unstable states and resonances could emerge from the underlying Poincaré symmetry. Important tools in this analysis are the Clebsch-Gordan coefficients for the Poincaré group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1968
ISSN: 0004-9735
DOI: 10.1017/s1446788700006200