The Apparent Structure of Dense Sidon Sets
نویسندگان
چکیده
The correspondence between perfect difference sets and transitive projective planes is well-known. We observe that all known dense (i.e., close to square-root size) Sidon subsets of abelian groups come from through a similar construction. classify the arising in this manner desarguesian find essentially no new examples, but there are many further examples nondesarguesian planes. conjecture arise manner. also give brief bestiary somewhat smaller with variety algebraic origins, for some them provide an overarching pattern.
منابع مشابه
Generalized Sidon sets
We give asymptotic sharp estimates for the cardinality of a set of residue classes with the property that the representation function is bounded by a prescribed number. We then use this to obtain an analogous result for sets of integers, answering an old question of Simon Sidon. © 2010 Elsevier Inc. All rights reserved. MSC: 11B
متن کاملArithmetic Characterizations of Sidon Sets
Let G be any discrete Abelian group. We give several arithmetic characterizations of Sidon sets in G. In particular, we show that a set A is a Sidon set iff there is a number 6 > 0 such that any finite subset A of A contains a subset B Q A with |B| > 6\A\ which is quasiindependent, i.e. such that the only relation of the form ]C\eB e x ^ = '̂ with e\ equal to + 1 or 0, is the trivial one. Let G ...
متن کاملPerfect difference sets constructed from Sidon sets
A set A of positive integers is a perfect difference set if every nonzero integer has an unique representation as the difference of two elements of A. We construct dense perfect difference sets from dense Sidon sets. As a consequence of this new approach we prove that there exists a perfect difference set A such that A(x) ≫ x √ . Also we prove that there exists a perfect difference set A such t...
متن کاملConstructions of generalized Sidon sets
We give explicit constructions of sets S with the property that for each integer k, there are at most g solutions to k = s1 + s2, si ∈ S; such sets are called Sidon sets if g = 2 and generalized Sidon sets (or B2[ ⌈ g/2 ⌉ ] sets) if g ≥ 3. We extend to generalized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa. We also further optimize Koulantzakis’ idea of interleaving sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Combinatorics
سال: 2023
ISSN: ['1077-8926', '1097-1440']
DOI: https://doi.org/10.37236/11191