The ?-Anti-Hermitian Solution to a System of Constrained Matrix Equations over the Generalized Segre Quaternion Algebra

نویسندگان

چکیده

In this paper, we propose three real representations of a generalized Segre quaternion matrix. We establish necessary and sufficient conditions for the existence ?-anti-Hermitian solution to system constrained matrix equations over algebra. also obtain expression general when it is solvable. Finally, provide numerical example verify main results paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of the common solution to some quaternion matrix equations with applications

We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Matrix Theory over the Complex Quaternion Algebra

We present in this paper some fundamental tools for developing matrix analysis over the complex quaternion algebra. As applications, we consider generalized inverses, eigenvalues and eigenvectors, similarity, determinants of complex quaternion matrices, and so on. AMS Mathematics Subject Classification: 15A06; 15A24; 15A33

متن کامل

Hermitian solutions to the system of operator equations T_iX=U_i.

In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...

متن کامل

Small Zeros of Hermitian Forms over a Quaternion Algebra

Let D be a positive definite quaternion algebra over a totally real number field K, F (X, Y ) a hermitian form in 2N variables over D, and Z a right D-vector space which is isotropic with respect to F . We prove the existence of a small-height basis for Z over D, such that F (X, X) vanishes at each of the basis vectors. This constitutes a non-commutative analogue of a theorem of Vaaler [19], an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15030592