The ?-Anti-Hermitian Solution to a System of Constrained Matrix Equations over the Generalized Segre Quaternion Algebra
نویسندگان
چکیده
In this paper, we propose three real representations of a generalized Segre quaternion matrix. We establish necessary and sufficient conditions for the existence ?-anti-Hermitian solution to system constrained matrix equations over algebra. also obtain expression general when it is solvable. Finally, provide numerical example verify main results paper.
منابع مشابه
Ranks of the common solution to some quaternion matrix equations with applications
We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملMatrix Theory over the Complex Quaternion Algebra
We present in this paper some fundamental tools for developing matrix analysis over the complex quaternion algebra. As applications, we consider generalized inverses, eigenvalues and eigenvectors, similarity, determinants of complex quaternion matrices, and so on. AMS Mathematics Subject Classification: 15A06; 15A24; 15A33
متن کاملHermitian solutions to the system of operator equations T_iX=U_i.
In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...
متن کاملSmall Zeros of Hermitian Forms over a Quaternion Algebra
Let D be a positive definite quaternion algebra over a totally real number field K, F (X, Y ) a hermitian form in 2N variables over D, and Z a right D-vector space which is isotropic with respect to F . We prove the existence of a small-height basis for Z over D, such that F (X, X) vanishes at each of the basis vectors. This constitutes a non-commutative analogue of a theorem of Vaaler [19], an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2023
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15030592