The Akaike Information Criterion Will Not Choose the No Common Mechanism Model
نویسندگان
چکیده
منابع مشابه
The akaike information criterion will not choose the no common mechanism model.
MARK T. HOLDER1,∗, PAUL O. LEWIS2, AND DAVID L. SWOFFORD3,4 1Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA; 2Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269-3043, USA; 3Institute for Genome Sciences and Policy Center for Evolutionary Genomics, D...
متن کاملPoint of View The Akaike Information Criterion Will Not Choose the No Common Mechanism Model
MARK T. HOLDER1,∗, PAUL O. LEWIS2, AND DAVID L. SWOFFORD3,4 1Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA; 2Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269-3043, USA; 3Institute for Genome Sciences and Policy Center for Evolutionary Genomics, D...
متن کاملExponential Smoothing and the Akaike Information Criterion
Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a puzzle. Should the count of the seed states be incorporated into the penalty term in the AIC formula?...
متن کاملAn improved Akaike information criterion for state-space model selection
Following the work of Hurvich, Shumway, and Tsai (1990), we propose an “improved” variant of the Akaike information criterion, AICi, for state-space model selection. The variant is based on Akaike’s (1973) objective of estimating the Kullback-Leibler information (Kullback 1968) between the densities corresponding to the fitted model and the generating or true model. The development of AICi proc...
متن کاملExtending the Akaike Information Criterion to Mixture Regression Models
We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Systematic Biology
سال: 2010
ISSN: 1076-836X,1063-5157
DOI: 10.1093/sysbio/syq028