The Akaike Information Criterion Will Not Choose the No Common Mechanism Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The akaike information criterion will not choose the no common mechanism model.

MARK T. HOLDER1,∗, PAUL O. LEWIS2, AND DAVID L. SWOFFORD3,4 1Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA; 2Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269-3043, USA; 3Institute for Genome Sciences and Policy Center for Evolutionary Genomics, D...

متن کامل

Point of View The Akaike Information Criterion Will Not Choose the No Common Mechanism Model

MARK T. HOLDER1,∗, PAUL O. LEWIS2, AND DAVID L. SWOFFORD3,4 1Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA; 2Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269-3043, USA; 3Institute for Genome Sciences and Policy Center for Evolutionary Genomics, D...

متن کامل

Exponential Smoothing and the Akaike Information Criterion

Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a puzzle. Should the count of the seed states be incorporated into the penalty term in the AIC formula?...

متن کامل

An improved Akaike information criterion for state-space model selection

Following the work of Hurvich, Shumway, and Tsai (1990), we propose an “improved” variant of the Akaike information criterion, AICi, for state-space model selection. The variant is based on Akaike’s (1973) objective of estimating the Kullback-Leibler information (Kullback 1968) between the densities corresponding to the fitted model and the generating or true model. The development of AICi proc...

متن کامل

Extending the Akaike Information Criterion to Mixture Regression Models

We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systematic Biology

سال: 2010

ISSN: 1076-836X,1063-5157

DOI: 10.1093/sysbio/syq028