The Accessibility Problem for Geometric Rough Differential Equations

نویسندگان

چکیده

Abstract We show how to use geometric arguments prove that the terminal solution a rough differential equation driven by path can be obtained driving same piecewise linear path. For this purpose, we combine some results of seminal work Sussmann on orbits vector fields [1] with calculus manifolds developed Cass, Litterer and Lyons in [2].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Inverse Problem for Rough Controlled Differential Equations

We provide a necessary and sufficient condition for a rough control driving a differential equation to be reconstructable, to some order, from observing the resulting controlled evolution. Physical examples and applications in stochastic filtering and statistics demonstrate the practical relevance of our result.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

On rough differential equations

We prove that the Itô map, that is the map that gives the solution of a differential equation controlled by a rough path of finite p-variation with p ∈ [2,3) is locally Lipschitz continuous in all its arguments and we give some sufficient conditions for global existence for non-bounded vector fields.

متن کامل

Integrability Estimates for Gaussian Rough Differential Equations

We derive explicit tail-estimates for the Jacobian of the solution flow for stochastic differential equations driven by Gaussian rough paths. In particular, we deduce that the Jacobian has finite moments of all order for a wide class of Gaussian process including fractional Brownian motion with Hurst parameter H > 1/4. We remark on the relevance of such estimates to a number of significant open...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dynamical and Control Systems

سال: 2023

ISSN: ['1079-2724', '1573-8698']

DOI: https://doi.org/10.1007/s10883-023-09648-y