The 4-class ranks of quadratic extensions of certain real quadratic fields
نویسندگان
چکیده
منابع مشابه
The 4-class Group of Real Quadratic Number Fields
In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire’s result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.
متن کاملQuadratic extensions of totally real quintic fields
In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...
متن کاملQuadratic Residue Covers for Certain Real Quadratic Fields
Let A„{a, b) = {ban+(a-l)/b)2+4an with n > 1 and ¿>|a-l . If W is a finite set of primes such that for each n > 1 there exists some q £W for which the Legendre symbol {A„{a, b)/q) ^ -1 , we call <£ a quadratic residue cover (QRC) for the quadratic fields K„{a, b) = Q{^jA„{a, b)). It is shown how the existence of a QRC for any a, b can be used to determine lower bounds on the class number of K„{...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملReduction of elliptic curves over certain real quadratic number fields
The main result of this paper is that an elliptic curve having good reduction everywhere over a real quadratic field has a 2-rational point under certain hypotheses (primarily on class numbers of related fields). It extends the earlier case in which no ramification at 2 is allowed. Small fields satisfying the hypotheses are then found, and in four cases the non-existence of such elliptic curves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1989
ISSN: 0022-314X
DOI: 10.1016/0022-314x(89)90057-7