Text Document Classification basedon Least Square Support Vector Machines with Singular Value Decomposition
نویسندگان
چکیده
منابع مشابه
Text classification: A least square support vector machine approach
This paper presents a least square support vector machine (LS-SVM) that performs text classification of noisy document titles according to different predetermined categories. The system’s potential is demonstrated with a corpus of 91,229 words from University of Denver’s Penrose Library catalogue. The classification accuracy of the proposed LS-SVM based system is found to be over 99.9%. The fin...
متن کاملAn Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification
Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...
متن کاملDocument Classification with Support Vector Machines
Document classification is the task of grouping documents into categories based upon their content never before has it been as important as it is today. The exponential growth of unstructured data combined with a marked increase in litigation, security and privacy rules have left organizations utterly unable to cope with the conflicting demands of the business, lawyers and regulators. The net i...
متن کاملSupport Vector Machines and Document Classification
Automatic Text categorization using machine learning methods like Support Vector Machines (SVM) have tremendous potential for effectively organizing electronic resources. Human categorization is very costly and time-consuming, thus limiting its application for large or rapidly changing collections. SVM is a comparatively new technique with a very solid mathematical foundation for solving a vari...
متن کاملArabic Text Classification Using Support Vector Machines
Text classification (TC) is the process of classifying documents into a predefined set of categories based on their content. Arabic language is highly inflectional and derivational language which makes text mining a complex task. In this paper we applied the Support Vector Machines (SVM) model in classifying Arabic text documents. The results compared with the other traditional classifiers Baye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2011
ISSN: 0975-8887
DOI: 10.5120/3312-4540