TerraMobilita/iQmulus urban point cloud analysis benchmark
نویسندگان
چکیده
منابع مشابه
TerraMobilita/iQmulus urban point cloud analysis benchmark
The object of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different obje...
متن کاملMassive point cloud data management: Design, implementation and execution of a point cloud benchmark
Point cloud data are important sources for 3D geo-information. An inventory of the point cloud data management user requirements has been compiled using structured interviews with users from different background: government, industry and academia. Based on these requirements a benchmark has been developed to compare various point cloud data management solutions with regard to functionality and ...
متن کاملSemantic3D.net: A new Large-scale Point Cloud Classification Benchmark
This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملObject Recognition in 3D Point Cloud of Urban Street Scene
In this paper we present a novel street scene semantic recognition framework, which takes advantage of 3D point clouds captured by a high-definition LiDAR laser scanner. An important problem in object recognition is the need for sufficient labeled training data to learn robust classifiers. In this paper we show how to significantly reduce the need for manually labeled training data by reduction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Graphics
سال: 2015
ISSN: 0097-8493
DOI: 10.1016/j.cag.2015.03.004