Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On approximate homomorphisms of ternary semigroups

We prove the generalized Ulam stability of ternary homomorphisms from commutative ternary semigroups into n-Banach spaces as well as into complete non-Archimedean normed spaces. Ternary algebraic structures appear in various domains of theoretical and mathematical physics, and p-adic numbers, which are the most important examples of non-Archimedean fields, have gained the interest of physicists...

متن کامل

Homomorphisms and Derivations in C-Ternary Algebras

and Applied Analysis 3 in the middle variable, and associative in the sense that x, y, z,w, v x, w, z, y , v x, y, z , w, v , and satisfies ‖ x, y, z ‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖ x, x, x ‖ ‖x‖ see 45, 47 . Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product x, y, z : 〈x, y〉z. If a C∗-ternary algebra A, ·, ·, · has an identity, that is, an element e ∈ A such that x x, e, e ...

متن کامل

Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras

Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...

متن کامل

Classification of Monogenic Ternary Semigroups

The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...

متن کامل

N(A)-ternary semigroups

T then it is proved that (1) ) ( ) ( ) ( 0 1 2 A N A N A N A    (2) N0(A) = A2, N1(A) is a semiprime ideal of T containing A, N2(A) = A4 are equivalent, where No(A) = The set of all A-potent elements in T, N1(A) = The largest ideal contained in No(A), N2(A) = The union of all A-potent ideals. If A is a semipseudo symmetric ideal of a ternary semigroup then it is proved that N0(A) = N1(A) = N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2012

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2012-34