TENSOR PRODUCTS OF STEINBERG ALGEBRAS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Iterated Twisted Tensor Products of Algebras

We introduce and study the definition, main properties and applications of iterated twisted tensor products of algebras, motivated by the problem of defining a suitable representative for the product of spaces in noncommutative geometry. We find conditions for constructing an iterated product of three factors, and prove that they are enough for building an iterated product of any number of fact...

متن کامل

Tensor Products of Leavitt Path Algebras

We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies and so they are not Morita equivalent either. By contrast, we show that K-theory ca...

متن کامل

Connections over Twisted Tensor Products of Algebras

Motivated from some results in classical differential geometry, we give a constructive procedure for building up a connection over a (twisted) tensor product of two algebras, starting from connections defined on the factors. The curvature for the product connection is explicitly calculated, and shown to be independent of the choice of the twisting map and the module twisting map used to define ...

متن کامل

Tensor Products of Commutative Banach Algebras

Let AI, be commutative semlslmple Banach algebras and 1 02 A2 be their projective tensor product. We prove that, if 10 2 is a group algebra (measure algebra) of a locally compact abelian group, then so are A 1 and A2. As a consequence, we prove that, if G is a locally compact abelian group and A is a comutatlve semi-simple Banach algebra, then the Banach algebra LI(G,A) of A-valued Bochner inte...

متن کامل

Diagonals in Tensor Products of Operator Algebras

In this paper we give a short, direct proof, using only properties of the Haagerup tensor product, that if an operator algebra A possesses a diagonal in the Haagerup tensor product of A with itself, then A must be isomorphic to a finite dimensional C∗-algebra. Consequently, for operator algebras, the first Hochschild cohomology group, H(A, X) = 0 for every bounded, Banach A-bimodule X , if and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 2019

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788719000302