Tensor Products, Infinite Products, and Projective Limits of Choquet Simplexes.
نویسندگان
چکیده
منابع مشابه
Fuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملfuzzy projective modules and tensor products in fuzzy module categories
let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...
متن کاملOn the Geometry of Projective Tensor Products
In this work, we study the volume ratio of the projective tensor products `p ⊗π `q ⊗π `r with 1 ≤ p ≤ q ≤ r ≤ ∞. We obtain asymptotic formulas that are sharp in almost all cases. As a consequence of our estimates, these spaces allow for a nearly Euclidean decomposition of Kašin type whenever 1 ≤ p ≤ q ≤ r ≤ 2 or 1 ≤ p ≤ 2 ≤ r ≤ ∞ and q = 2. Also, from the Bourgain-Milman bound on the volume rat...
متن کاملbivariations and tensor products
the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...
متن کاملInfinite Braided Tensor Products and 2d Quantum Gravity
Braided tensor products have been introduced by the author as a systematic way of making two quantum-group-covariant systems interact in a covariant way, and used in the theory of braided groups. Here we study infinite braided tensor products of the quantum plane (or other constant Zamolodchikov algebra). It turns out that such a structure precisely describes the exchange algebra in 2D quantum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1968
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-10879