منابع مشابه
Fuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملTensor products and *-autonomous categories
The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational seman...
متن کاملfuzzy projective modules and tensor products in fuzzy module categories
let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...
متن کاملCartesian Closed Topological Categories and Tensor Products
The projective tensor product in a category of topologicalR-modules (where R is a topological ring) can be defined in Top, the category of topological spaces, by the same universal property used to define the tensor product of R-modules in Set. In this article, we extend this definition to an arbitrary topological category X and study how the cartesian closedness of X is related to the monoidal...
متن کاملA Quillen Approach to Derived Categories and Tensor Products
We put a monoidal model category structure (in the sense of Quillen) on the category of chain complexes of quasi-coherent sheaves over a quasi-compact and semi-separated scheme X. The approach generalizes and simpli es the method used by the author in [Gil04] and [Gil06] to build monoidal model structures on the category of chain complexes of modules over a ring and chain complexes of sheaves o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1965
ISSN: 0021-8693
DOI: 10.1016/0021-8693(65)90022-0