Tension Promoted Sulfur Exchange for Cellular Delivery
نویسندگان
چکیده
منابع مشابه
Tension Promoted Sulfur Exchange for Cellular Delivery
Cellular delivery is crucial for the discovery and development of novel drugs and probes. However, the efficient and reliable delivery of bioactive molecules into cells remains both challenging and limited in scope. Therefore, there is an emerging interest to develop conceptually innovative approaches to precisely deliver relevant biomolecules to a target site. With this in mind, Matile and co-...
متن کاملMapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.
Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in disti...
متن کاملFerrocene-Promoted Long-Cycle Lithium-Sulfur Batteries.
Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur-cathode materials in lithium-sulfur (Li-S) batteries. To develop long-cycle Li-S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well-defined surface sites; thereby improving cycling stability and allowing study of mo...
متن کاملEpidithiodiketopiperazines: Strain-Promoted Thiol-Mediated Cellular Uptake at the Highest Tension
The disulfide dihedral angle in epidithiodiketopiperazines (ETPs) is near 0°. Application of this highest possible ring tension to strain-promoted thiol-mediated uptake results in efficient delivery to the cytosol and nucleus. Compared to the previous best asparagusic acid (AspA), ring-opening disulfide exchange with ETPs occurs more efficiently even with nonactivated thiols, and the resulting ...
متن کاملDNA Strand Exchange Promoted by RecA K72R
Replacement of lysine 72 in RecA protein with arginine produces a mutant protein that binds but does not hydrolyze ATP. The protein nevertheless promotes DNA strand exchange (Rehrauer, W. M., and Kowalczykowski, S. C. (1993) J. Biol. Chem. 268, 1292–1297). With RecA K72R protein, the formation of the hybrid DNA product of strand exchange is greatly affected by the concentration of Mg in ways th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Central Science
سال: 2017
ISSN: 2374-7943,2374-7951
DOI: 10.1021/acscentsci.7b00178