Tensile fracture during transformation superplasticity of Ti–6Al–4V
نویسندگان
چکیده
منابع مشابه
Tensile fracture during transformation superplasticity of Ti–6Al–4V
During thermal cycling through the a–b phase transformation under the action of a small external biasing stress, Ti alloys exhibit an average deformation stress exponent of unity and achieve superplastic strains. We report tensile experiments on Ti–6Al–4V with an applied stress of 4.5 MPa, aimed at understanding the failure processes during transformation superplasticity. The development of cav...
متن کاملTRANSFORMATION SUPERPLASTICITY OF SUPER a2 TITANIUM ALUMINIDE
ÐTransformation superplasticity of an intermetallic Ti3Al-based alloy (Super a2) is demonstrated by thermal cycling about the a2/b transformation temperature range under a uniaxial tensile biasing stress. Failure strains up to 610% were recorded at a stress of 3 MPa, compared with 110% for deformation by isothermal creep at the same stress. The strain increment produced during each half-cycle i...
متن کاملHydrogen-induced transformation superplasticity in zirconium
Commercially-pure zirconium is alloyed and dealloyed repeatedly with hydrogen at 810 C, thereby cyclically triggering phase transformations between hydrogen-free a-Zr and hydrogen-alloyed b-Zr. Under an externally applied tensile stress, the internal mismatch stresses produced by the a-b transformations are biased, resulting in the accumulation of strain increments after each chemical cycle in ...
متن کاملAcoustic Emission Response of Ti6al4v Alloy in Different Heat Treatment Conditions During Tensile Testing
Acoustic Emission (AE) Technique is a unique Non Destructive Testing method being used as a global online monitoring tool for detection, location and characterization of various kinds of active defects. This paper illustrates the attempt to find the AE response of Ti6Al4V Alloy in different heat treatment conditions during tensile testing. Ti6Al4V alloy is tested in mill annealed, beta annealed...
متن کاملUnified tensile fracture criterion.
We find that the classical failure criteria, i.e., maximum normal stress criterion, Tresca criterion, Mohr-Coulomb criterion, and von Mises criterion, cannot satisfactorily explain the tensile fracture behavior of the bulk metallic glass (BMG) materials. For a better description, we propose an ellipse criterion as a new failure criterion to unify the four classical criteria above and apply it t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Research
سال: 2001
ISSN: 0884-2914,2044-5326
DOI: 10.1557/jmr.2001.0115