Temporal Translational Control by a Metastable RNA Structure
نویسندگان
چکیده
منابع مشابه
Temporal translational control by a metastable RNA structure.
Programmed cell death by the hok/sok locus of plasmid R1 relies on a complex translational control mechanism. The highly stable hok mRNA is activated by 3'-end exonucleolytical processing. Removal of the mRNA 3' end releases a 5'-end sequence that triggers refolding of the mRNA. The refolded hok mRNA is translatable but can also bind the inhibitory Sok antisense RNA. Binding of Sok RNA leads to...
متن کاملTranslational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics
The thermodynamics of RNA-RNA interaction consists of two components: the energy necessary to make a potential binding region accessible, i.e., unpaired, and the energy gained from the base pairing of the two interaction partners. We show here that both components can be efficiently computed using an improved variant of RNAup. The method is then applied to a set of bacterial small RNAs involved...
متن کاملThe influence of a metastable structure in plasmid primer RNA on antisense RNA binding kinetics.
Replication of the ColE1 group plasmids is kinetically regulated by the interaction between plasmid-encoded primer RNA II and antisense RNA I. The binding is dependent on alternative RNA II conformations, formed during the transcription, and effectively inhibits the primer function within some time interval. In this paper, the folding pathways for the wild type and copy number mutants of ColE1 ...
متن کاملDendritic BC1 RNA in translational control mechanisms
Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation initiation complexes. A translational repres...
متن کاملTranslational control by RGS2
The regulator of G protein signaling (RGS) proteins are a family of guanosine triphosphatase (GTPase)-accelerating proteins. We have discovered a novel function for RGS2 in the control of protein synthesis. RGS2 was found to bind to eIF2Bepsilon (eukaryotic initiation factor 2B epsilon subunit) and inhibit the translation of messenger RNA (mRNA) into new protein. This effect was not observed fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2001
ISSN: 0021-9258
DOI: 10.1074/jbc.m105347200