Temporal pattern identification using spike-timing dependent plasticity
نویسندگان
چکیده
منابع مشابه
Temporal pattern identification using spike-timing dependent plasticity
This paper addresses the question of the functional role of the dual application of positive and negative Hebbian time dependent plasticity rules, in the particular framework of reinforcement learning tasks. Our simulations take place in a recurrent network of spiking neurons with inhomogeneous synaptic weights. The network spontaneously displays a self-sustained activity. A Spike-Timing Depend...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملTemporal Modulation of Spike-Timing-Dependent Plasticity
Spike-timing-dependent plasticity (STDP) has attracted considerable experimental and theoretical attention over the last decade. In the most basic formulation, STDP provides a fundamental unit - a spike pair - for quantifying the induction of long-term changes in synaptic strength. However, many factors, both pre- and postsynaptic, can affect synaptic transmission and integration, especially wh...
متن کاملSpatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity
It has previously been shown that by using spike-timing-dependent plasticity (STDP), neurons can adapt to the beginning of a repeating spatio-temporal firing pattern in their input. In the present work, we demonstrate that this mechanism can be extended to train recognizers for longer spatio-temporal input signals. Using a number of neurons that are mutually connected by plastic synapses and su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2007
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2006.10.082