Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed
نویسندگان
چکیده
منابع مشابه
Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed.
Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inhe...
متن کاملTime-Correlated Single Photon Counting
Time-resolved fluorescence spectroscopy is a powerful analysis tool in fundamental physics as well as in the life sciences. Implementing it in the time domain requires recording the time dependent intensity profile of the emitted light upon excitation by a short flash of light, typically a laser pulse. While in principle, one could attempt to record the time decay profile of the signal from a s...
متن کاملFluorescence lifetime imaging by time-correlated single-photon counting.
We present a time-correlated single photon counting (TCPSC) technique that allows time-resolved multi-wavelength imaging in conjunction with a laser scanning microscope and a pulsed excitation source. The technique is based on a four-dimensional histogramming process that records the photon density over the time of the fluorescence decay, the x-y coordinates of the scanning area, and the wavele...
متن کاملLong-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting.
We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an individual single-photon detector. Depth images...
متن کاملFour-dimensional multiphoton microscopy with time-correlated single-photon counting.
We report on the implementation of fluorescence-lifetime imaging in multiphoton excitation microscopy that uses PC-compatible modules for time-correlated single-photon counting. Four-dimensional data stacks are produced with each pixel featuring fluorescence-decay curves that consist of as many as 4096 bins. Fluorescence lifetime(s) and their amplitude(s) are extracted by statistical methods at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Optics Express
سال: 2016
ISSN: 2156-7085,2156-7085
DOI: 10.1364/boe.7.001385