Taylor’s Law for Some Infinitely Divisible Probability Distributions from Population Models

نویسندگان

چکیده

In a family of random variables, Taylor’s law or power fluctuation scaling is variance function that gives the $$\sigma ^{2}>0$$ variable (rv) X with expectation $$\mu >0$$ as $$ : ^{2}=A\mu ^{b}$$ for finite real $$A>0,\ b$$ are same all rvs in family. Equivalently, TL holds when $$\log \sigma ^{2}=a+b\log \mu ,\ a=\log A$$ , some set. Here we analyze possible values exponent b five families infinitely divisible two-parameter distributions and show how depend on parameters these distributions. The Tweedie–Bar-Lev–Enis, negative binomial, compound Poisson-geometric, geometric-Poisson (or Pólya-Aeppli), gamma These arise frequently empirical data population models, they limit laws Markov processes exhibit each case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Processes with Infinitely Divisible Limit Distributions: Some Examples

J.BSTllCT A set of examples is described which suggests that members of a certain class of Markov processes have infinitely divisible limit distributions. A counter example rilles out such a possibility and raises the question of what further restrictions are required to guarantee infinitely divisible limits. Some related examples illustrate the same occurrence of infinitely divisible limit dis...

متن کامل

Representation of infinitely divisible distributions on cones

We investigate infinitely divisible distributions on cones in Fréchet spaces. We show that every infinitely divisible distribution concentrated on a normal cone has the regular Lévy–Khintchine representation if and only if the cone is regular. These results are relevant to the study of multidimensional subordination.

متن کامل

Infinitely divisible multivariate and matrix Gamma distributions

Classes of multivariate and cone valued infinitely divisible Gamma distributions are introduced. Particular emphasis is put on the cone-valued case, due to the relevance of infinitely divisible distributions on the positive semi-definite matrices in applications. The cone-valued class of generalised Gamma convolutions is studied. In particular, a characterisation in terms of an Itô-Wiener integ...

متن کامل

Tempered infinitely divisible distributions and processes

In this paper, we construct the new class of tempered infinitely divisible (TID) distributions. Taking into account the tempered stable distribution class, as introduced by in the seminal work of Rosińsky [10], a modification of the tempering function allows one to obtain suitable properties. In particular, TID distributions may have exponential moments of any order and conserve all proper prop...

متن کامل

Characteristic Kernels and Infinitely Divisible Distributions

We connect shift-invariant characteristic kernels to infinitely divisible distributions on R. Characteristic kernels play an important role in machine learning applications with their kernel means to distinguish any two probability measures. The contribution of this paper is twofold. First, we show, using the Lévy–Khintchine formula, that any shift-invariant kernel given by a bounded, continuou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2022

ISSN: ['0022-4715', '1572-9613']

DOI: https://doi.org/10.1007/s10955-022-02962-y