Taut distance-regular graphs of even diameter

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taut Distance-Regular Graphs of Odd Diameter

Let denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of . For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E,...

متن کامل

Taut distance-regular graphs and the subconstituent algebra

We consider a bipartite distance-regular graph Γ with diameter D ≥ 4 and valency k ≥ 3. Let X denote the vertex set of Γ and fix x ∈ X. Let Γ22 denote the graph with vertex set X̆ = {y ∈ X | ∂(x, y) = 2}, and edge set R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 2}, where ∂ is the path-length distance function for Γ. The graph Γ22 has exactly k2 vertices, where k2 is the second valency of Γ. Let η1, η2, . . . ...

متن کامل

Tight Distance-regular Graphs with Small Diameter

We prove the following bound for a k regular graph on n vertices with nontrivial eigenvalues from the interval r s n k rs k r k s Equality holds if and only if the graph is strongly regular with eigenvalues in fk s rg Nonbipartite distance regular graphs with diameter d and eigenvalues k d whose local graphs satisfy the above bound with equality for s b and r b d are called tight graphs and are...

متن کامل

Improving diameter bounds for distance-regular graphs

In this paper we study the sequence (ci)0≤i≤d for a distance-regular graph. In particular we show that if d ≥ 2j and cj = c > 1 then c2j > c holds. Using this we give improvements on diameter bounds by Hiraki and Koolen [5], and Pyber [8], respectively, by applying this inequality.

متن کامل

A new family of distance-regular graphs with unbounded diameter

We construct distance-regular graphs with the same classical parameters as the Grassmann graphs on the e-dimensional subspaces of a (2e+1)-dimensional space over an arbitrary finite field. This provides the first known family of non-transitive distance-regular graphs with unbounded diameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2004

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2003.11.002