Tangent Dirac Structures and Poisson Dirac Submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac submanifolds and Poisson involutions

Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...

متن کامل

Tangent Dirac structures and submanifolds by Izu Vaisman

We write down the local equations that characterize the sub-manifolds N of a Dirac manifold M which have a normal bundle that is either a coisotropic or an isotropic submanifold of T M endowed with the tangent Dirac structure. In the Poisson case, these formulas prove again a result of Xu: the submanifold N has a normal bundle which is a coisotropic submanifold of T M with the tangent Poisson s...

متن کامل

dirac structures

in this paper we introduce the concept of dirac structures on (hermitian) modules and vectorbundles and deduce some of their properties. among other things we prove that there is a one to onecorrespondence between the set of all dirac structures on a (hermitian) module and the group of allautomorphisms of the module. this correspondence enables us to represent dirac structures on (hermitian)mod...

متن کامل

Quasi-Poisson structures as Dirac structures

We show that quasi-Poisson structures can be identified with Dirac structures in suitable Courant algebroids. This provides a geometric way to construct Lie algebroids associated with quasi-Poisson spaces.

متن کامل

Dirac operators on Lagrangian submanifolds

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dhaka University Journal of Science

سال: 2015

ISSN: 2408-8528,1022-2502

DOI: 10.3329/dujs.v62i1.21955