Tameness, uniqueness triples and amalgamation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categoricity, Amalgamation, and Tameness

Theorem. For each 2 ≤ k < ω there is an Lω1,ω-sentence φk such that: (1) φk is categorical in μ if μ ≤ אk−2; (2) φk is not אk−2-Galois stable; (3) φk is not categorical in any μ with μ > אk−2; (4) φk has the disjoint amalgamation property; (5) For k > 2, (a) φk is (א0,אk−3)-tame; indeed, syntactic first-order types determine Galois types over models of cardinality at most אk−3; (b) φk is אm-Gal...

متن کامل

On the Uniqueness Conjecture for Markoff Triples

ν(θ) = inf{c : |θ − p/q| < c/q for infinitely many reduced fractions p/q}. The set of values {νi} of the Markoff function in the range ν(θ) > 1/3 is called the Markoff spectrum [7], which is a denumerable infinite set and νi ↓ 1/3. An other definition of the Markoff spectrum uses the integer solutions of the Diophantine equation x + y + z = 3xyz. (1) A solution (x, y, z) to this equation with 0...

متن کامل

Uniqueness of limit models in classes with amalgamation

We prove: Theorem 0.1 (Main Theorem). Let K be an AEC and μ > LS(K). Suppose K satisfies the disjoint amalgamation property for models of cardinality μ. If K is μ-Galois-stable, does not have long splitting chains, and satisfies locality of splitting, then any two (μ, σl)-limits over M for (l ∈ {1, 2}) are isomorphic over M . This result extends results of Shelah from [Sh 394], [Sh 576], [Sh 60...

متن کامل

Tameness and Extending Frames

We combine two notions in AECs, tameness and good λ-frames, and show that they together give a very well-behaved nonforking notion in all cardinalities. This helps to fill a longstanding gap in classification theory of tame AECs and increases the applicability of frames. Along the way, we prove a complete stability transfer theorem and uniqueness of limit models in these AECs.

متن کامل

Tameness and Frames Revisited

We study the problem of extending an abstract independence notion for types of singletons (what Shelah calls a good frame) to longer types. Working in the framework of tame abstract elementary classes, we show that good frames can always be extended to types of independent sequences. As an application, we show that tameness and a good frame imply Shelah’s notion of dimension is well-behaved, co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2016

ISSN: 0168-0072

DOI: 10.1016/j.apal.2015.09.001