Tailoring of Magnetic Hyperthermia Treatment Using Superparamagnetic Iron Oxide Nanoparticles
نویسندگان
چکیده
منابع مشابه
Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy
Superparamagnetic magnetite nanoparticles (MNP) of about 10 nm were designed with proper physicochemical characteristics by an economic, biocompatible chemical co-precipitation of Fe and Fe in an ammonia solution, for hyperthermia applications. Synthetic methodology has been developed to get a well dispersed and homogeneous aqueous suspension of MNPs. Citric acid was used to stabilize the magne...
متن کاملAn investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment
Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...
متن کاملApplication of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment
Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. N...
متن کاملHyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles
Magnetic hyperthermia - a potential cancer treatment in which superparamagnetic iron oxide nanoparticles (SPIONs) are made to resonantly respond to an alternating magnetic field (AMF) and thereby produce heat - is of significant current interest. We have previously shown that mesenchymal stem cells (MSCs) can be labeled with SPIONs with no effect on cell proliferation or survival and that withi...
متن کاملMultifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment.
Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MOJ Biology and Medicine
سال: 2017
ISSN: 2574-9722
DOI: 10.15406/mojbm.2017.02.00038