Taguchi based fuzzy logic model for optimisation and prediction of surface roughness during AWJM of DRCUFP composites

نویسندگان

چکیده

From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties terms load bearing capacity environmental sustainability fibers uptake limited due to its poor machinability characteristics. Hence this paper, Taguchi based fuzzy logic model optimization prediction process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) new class polyester i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) has explored. Initially machining experiments carried out using L 27 orthogonal array obtained from Design Experiments (TDOE). Finally, developed optimisation roughness. extensive experimentation TDOE it was observed that optimum cutting conditions obtaining minimum value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand distance: 1 abrasive flow rate: 12 g/s, depth cut (C): 5 mm Size:200 microns. Further FLM, is 100 8 size:100 microns gave higher values (3.47 microns) than at maximum 150 4 15 size:200 (3.25 microns).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water

abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Particle swarm optimisation prediction model for surface roughness

Acrylic sheet is a crystal clear (with transparency equal to optical glass), lightweight material having outstanding weather ability, high impact resistance, good chemical resistance, and excellent thermoformability and machinability. This paper develops the artificial intelligent model using partial swarm optimization (PSO) to predict the optimum surface roughness when cutting acrylic sheets w...

متن کامل

Prediction of surface roughness in ultraprecision turning using fuzzy logic

Ultraprecision turning is a manufacturing process used to generate a high surface roughness in precision components, and its input-output relationships are highly nonlinear. Surface roughness of a turned surface depends on the selection of cutting variables, such as cutting speed, feed and depth of cut. Realizing the fact that fuzzy logic controller (FLC) is a powerful tool for dealing with imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manufacturing review

سال: 2022

ISSN: ['2265-4224']

DOI: https://doi.org/10.1051/mfreview/2021027