$T_{f}$-splines et approximation par $T_{f}$ -prolongement

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation by Conic Splines

We show that the complexity of a parabolic or conic spline approximating a sufficiently smooth curve with non-vanishing curvature to within Hausdorff distance ε is c1ε +O(1), if the spline consists of parabolic arcs, and c2ε + O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the Euclidean and affine curvature of the curve. We also show that...

متن کامل

Bivariate segment approximation and splines

The problem to determine partitions of a given reet angle which are optimal for segment approximation (e.g. by bivariate pieeewise polynomials) is investigated. We give eriteria for optimal partitions and develop algorithms for eomputing optimal partitions of eertain types. It is shown that there is a surprising relationship between various types of optimal partitions. In this way, we obtain go...

متن کامل

Convex Approximation by Quadratic Splines

Given a convex function f without any smoothness requirements on its derivatives, we estimate its error of approximation by C 1 convex quadratic splines in terms of ! 3 (f; 1=n).

متن کامل

On uniform approximation by splines

for 0 ≤ r ≤ k − 1. In particular, dist (f, S π) = O(|π| ) for f ∈ C(I), or, more generally, for f ∈ C(I), such, that f (k−1) satisfies a Lipschitz condition, a result proved earlier by different means [2]. These results are shown to be true even if I is permitted to become infinite and some of the knots are permitted to coalesce. The argument is based on a “local” interpolation scheme Pπ by spl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1993

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-106-3-203-211