$T^*$-extensions and abelian extensions of hom-Lie color algebras
نویسندگان
چکیده
منابع مشابه
Quasi-hom-Lie Algebras, Central Extensions and 2-cocycle-like Identities
This paper begins by introducing the concept of a quasi-hom-Lie algebra, or simply, a qhl-algebra, which is a natural generalization of hom-Lie algebras introduced in a previous paper [14]. Quasi-hom-Lie algebras include also as special cases (color) Lie algebras and superalgebras, and can be seen as deformations of these by homomorphisms, twisting the Jacobi identity and skew-symmetry. The nat...
متن کاملMetric Lie algebras and quadratic extensions
The present paper contains a systematic study of the structure of metric Lie algebras, i.e., finite-dimensional real Lie algebras equipped with a non-degenerate invariant symmetric bilinear form. We show that any metric Lie algebra g without simple ideals has the structure of a so called balanced quadratic extension of an auxiliary Lie algebra l by an orthogonal l-module a in a canonical way. I...
متن کاملCentral Extensions of Some Lie Algebras
We consider three Lie algebras: Der C((t)), the Lie algebra of all derivations on the algebra C((t)) of formal Laurent series; the Lie algebra of all differential operators on C((t)); and the Lie algebra of all differential operators on C((t)) ⊗ Cn. We prove that each of these Lie algebras has an essentially unique nontrivial central extension. The Lie algebra of all derivations on the Laurent ...
متن کاملOn universal central extensions of Hom-Leibniz algebras
In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, univer...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de la Unión Matemática Argentina
سال: 2017
ISSN: 1669-9637,0041-6932
DOI: 10.33044/revuma.v59n1a06