Systematic identification of proteins that elicit drug side effects
نویسندگان
چکیده
منابع مشابه
Systematic identification of proteins that elicit drug side effects
Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known d...
متن کاملSystematic prediction of drug combinations based on clinical side-effects
Drug co-prescription (or drug combination) is a therapeutic strategy widely used as it may improve efficacy and reduce side-effect (SE). Since it is impractical to screen all possible drug combinations for every indication, computational methods have been developed to predict new combinations. In this study, we describe a novel approach that utilizes clinical SEs from post-marketing surveillanc...
متن کاملSystematic Drug Repositioning Based on Clinical Side-Effects
Drug repositioning helps fully explore indications for marketed drugs and clinical candidates. Here we show that the clinical side-effects (SEs) provide a human phenotypic profile for the drug, and this profile can suggest additional disease indications. We extracted 3,175 SE-disease relationships by combining the SE-drug relationships from drug labels and the drug-disease relationships from Ph...
متن کاملDrug target identification using side-effect similarity.
Targets for drugs have so far been predicted on the basis of molecular or cellular features, for example, by exploiting similarity in chemical structure or in activity across cell lines. We used phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed drugs, a network of 1018 side effect-driven drug-drug relations became apparent, 261 of which are f...
متن کاملMetabolic Network Prediction of Drug Side Effects.
Drug side effects levy a massive cost on society through drug failures, morbidity, and mortality cases every year, and their early detection is critically important. Here, we describe the array of model-based phenotype predictors (AMPP), an approach that leverages medical informatics resources and a human genome-scale metabolic model (GSMM) to predict drug side effects. AMPP is substantially pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Systems Biology
سال: 2013
ISSN: 1744-4292,1744-4292
DOI: 10.1038/msb.2013.10