System identification of spiking neuron networks: a model-driven approach
نویسندگان
چکیده
منابع مشابه
Spiking Neuron Networks a Survey
Spiking Neuron Networks (SNNs) are often referred to as the 3 generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open ...
متن کاملAutomatic Generation of a Multi Agent System for Crisis Management by a Model Driven Approach
Considering the increasing occurrences of unexpected events and the need for pre-crisis planning in order to reduce risks and losses, modeling instant response environments is needed more than ever. Modeling may lead to more careful planning for crisis-response operations, such as team formation, task assignment, and doing the task by teams. A common challenge in this way is that the model shou...
متن کاملToward a Spiking-Neuron Model of the Oculomotor System
We present a physiologically plausible spiking neuron-level model of the superior colliculus as part of the saccade-generating visual system. Two major features of the area are the bursting behavior of its output neurons that drive eye movements, and the spreading neuron activation in the intermediate layer during a saccade. We show that the bursting activity profile that drives the main sequen...
متن کاملComputing with Spiking Neuron Networks A Review
Spiking Neuron Networks (SNNs) are often referred to as the third generation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike firing. SNNs overcome the computational power of neural networks...
متن کاملInvestigation of a chaotic spiking neuron model
Chaos provides many interesting properties that can be used to achieve computational tasks. Such properties are sensitivity to initial conditions, space filling, control and synchronization. Chaotic neural models have been devised to exploit such properties. In this paper, a chaotic spiking neuron model is investigated experimentally. This investigation is performed to understand the dynamic be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2011
ISSN: 1471-2202
DOI: 10.1186/1471-2202-12-s1-p215