Syntactic and Semantic Features For Code-Switching Factored Language Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features for factored language models for code-Switching speech

This paper presents investigations of features which can be used to predict Code-Switching speech. For this task, factored language models are applied and implemented into a state-of-the-art decoder. Different possible factors, such as words, part-of-speech tags, Brown word clusters, open class words and open class word clusters are explored. We find that Brown word clusters, part-of-speech tag...

متن کامل

Combination of Recurrent Neural Networks and Factored Language Models for Code-Switching Language Modeling

In this paper, we investigate the application of recurrent neural network language models (RNNLM) and factored language models (FLM) to the task of language modeling for Code-Switching speech. We present a way to integrate partof-speech tags (POS) and language information (LID) into these models which leads to significant improvements in terms of perplexity. Furthermore, a comparison between RN...

متن کامل

Combining recurrent neural networks and factored language models during decoding of code-Switching speech

In this paper, we present our latest investigations of language modeling for Code-Switching. Since there is only little text material for Code-Switching speech available, we integrate syntactic and semantic features into the language modeling process. In particular, we use part-of-speech tags, language identifiers, Brown word clusters and clusters of open class words. We develop factored langua...

متن کامل

Factored Language Models Tutorial

The Factored Language Model (FLM) is a flexible framework for incorporating various information sources, such as morphology and part-of-speech, into language modeling. FLMs have so far been successfully applied to tasks such as speech recognition and machine translation; it has the potential to be used in a wide variety of problems in estimating probability tables from sparse data. This tutoria...

متن کامل

Factored Neural Language Models

Language models based on a continuous word representation and neural network probability estimation have recently emerged as an alternative to the established backoff language models. At the same time, factored language models have been developed that use additional word information (such as parts-of-speech, morphological classes, and syntactic features) in conjunction with refined back-off str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE/ACM Transactions on Audio, Speech, and Language Processing

سال: 2015

ISSN: 2329-9290,2329-9304

DOI: 10.1109/taslp.2015.2389622