Synergistic catalytic properties of bifunctional nanoalloy catalysts in rechargeable lithium-oxygen battery
نویسندگان
چکیده
منابع مشابه
The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes
To satisfy the energy storage needs of society in the long-term, an advance in battery energy density is required. The lithium–oxygen battery is one of the emerging opportunities available for enhanced energy storage. The challenge for the Li–O2 battery is the progress of development of the O2-cathode that allows reversible formation of Li2O2 in a stable electrolyte within its pores. 2012 Elsev...
متن کاملA Bifunctional Organic Redox Catalyst for Rechargeable Lithium–Oxygen Batteries with Enhanced Performances
An organic bifunctional catalyst poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) has been prepared and coated on carbon surface during electrode preparation. The PTMA has been applied as an efficient bifunctional catalyst for lithium-oxygen batteries with lower overpotentials, enhanced rate performances, and prolonged cycle life.
متن کاملA Polymer Lithium-Oxygen Battery
Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC(-1) reflected in a surface capacity...
متن کاملRechargeable quasi-solid state lithium battery with organic crystalline cathode
Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We...
متن کاملMicroporous gel polymer electrolytes for lithium rechargeable battery application
Microporous poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) membranes were prepared using the phase-separation method. Then, the membranes were immersed in liquid electrolyte to form polymer electrolytes. The effects of PMMA on the morphology, degree of crystallinity, porosity, and electrolyte uptake of the PVDF membrane were studied. The addition of PMMA increased the pore size...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Power Sources
سال: 2016
ISSN: 0378-7753
DOI: 10.1016/j.jpowsour.2016.06.106