Symmetry of positive solutions of some nonlinear equations
نویسندگان
چکیده
منابع مشابه
Symmetry of Positive Solutions of Some Nonlinear Equations
where f : R → R is a locally Lipschitz continuous function, must be also symmetric with respect to x1. The proof of this result is based on the moving plane method and the maximum principle. In a recent paper, Berestycki and Nirenberg [2] have substantially simplified the moving plane method obtaining, among other results, the symmetry of the positive solutions of (1.1) without assuming any smo...
متن کاملRadial Symmetry of Positive Solutions of Nonlinear Elliptic Equations
We study the radial symmetry and asymptotic behavior at x = 1 of positive solutions of u = '(jxj)u ; x 2 IR n and jxj large () where > 1 and '(r) is positive and continuous for r large. In particular we give conditions on ' which guarantee that each positive solution of () satisses u(x) u(jxj) ! 1 as jxj ! 1 where u(r) is the average of u on the sphere jxj = r.
متن کاملUniqueness of Positive Solutions to Some Coupled Nonlinear Schrödinger Equations
We study the uniqueness of positive solutions of the following coupled nonlinear Schrödinger equations: ∆u1 − λ1u1 + μ1u1 + βu1u2 = 0 in RN , ∆u2 − λ2u2 + μ2u2 + βu1u2 = 0 in RN , u1 > 0, u2 > 0, u1, u2 ∈ H1(RN ) where N ≤ 3, λ1, λ2, μ1, μ2 are positive constants and β ≥ 0 is a coupling constant. We prove first the uniqueness of positive solution for sufficiently small β > 0. Secondly, ass...
متن کاملNonexistence of Positive Solutions for Some Fully Nonlinear Elliptic Equations
denote the kth elementary symmetric function, and let Γk denote the connected component of {λ ∈ R : σk(λ) > 0} containing the positive cone {λ ∈ R : λ1 > 0, · · · , λn > 0}. It is well known that Γk = {λ ∈ R : σl(λ) > 0, 1 ≤ l ≤ k}. Let S denote the set of n× n real symmetric matrices. For any A ∈ S we denote by λ(A) the eigenvalues of A. Throughout this note we will assume that Γ ⊂ R is an ope...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topological Methods in Nonlinear Analysis
سال: 1998
ISSN: 1230-3429
DOI: 10.12775/tmna.1998.027