Symmetry-adapted perturbation theory for the calculation of Hartree—Fock interaction energies

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of Dissociation Energies Using Many - Body Perturbation Theory

A major task for theoretical chemists is the development of methods to predict energy differences with chemical accuracy. Most quantum chemists agree that accurate prediction of relative energies requires application of theories that include electron correlation effects, effects not treated in self-consistent-field (SCF) calculations [1-4]. Estimates of molecular correlation energy have been ob...

متن کامل

Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set.

Noncovalent interactions play an important role in the stabilization of biological molecules. The effective fragment potential (EFP) is a computationally inexpensive ab initio-based method for modeling intermolecular interactions in noncovalently bound systems. The accuracy of EFP is benchmarked against the S22 and S66 data sets for noncovalent interactions [Jurečka, P.; Šponer, J.; Černý, J.; ...

متن کامل

Charge Transfer from Regularized Symmetry-Adapted Perturbation Theory.

The charge-transfer (CT) together with the polarization energy appears at second and higher orders in symmetry-adapted perturbation theory (SAPT). At present there is no theoretically compelling way of isolating the charge-transfer energy that is simultaneously basis-set independent and applicable for arbitrary intermolecular separation. We argue that the charge-transfer can be interpreted as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecular Physics

سال: 1996

ISSN: 0026-8976

DOI: 10.1080/00268979609482451