Symmetric Utumi quotient rings of Ore extensions by skew derivations
نویسندگان
چکیده
منابع مشابه
Ore extensions of skew $pi$-Armendariz rings
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
متن کاملore extensions of skew $pi$-armendariz rings
for a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-armendariz ring, that is a generalization of both $pi$-armendariz rings, and $(alpha,delta)$-compatible skew armendariz rings. we first observe the basic properties of skew $pi$-armendariz rings, and extend the class of skew $pi$-armendariz rings through various ring extensions. we nex...
متن کاملOn Classical Quotient Rings of Skew Armendariz Rings
Let R be a ring, α an automorphism, and δ an α-derivation of R. If the classical quotient ring Q of R exists, then R is weak α-skew Armendariz if and only if Q is weak α-skew Armendariz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly ci...
متن کاملOre Extensions over Pseudo-valuation Rings
Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let δ be a derivation of R and σ be an automorphism of R. Then we prove the following: 1. If R is a Pseudo-valuation ring, then R[x, δ] is also a Pseudo-valuation ring. 2. If R is a divided ring, then R[x, δ] is also a divided ring. 3. If R is a Pseudo-valuation ring, thenR[x, x−1, σ] is also a Pseudo-valuation ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2010
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-10-10342-6