Symmetric Markov Chains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of symmetric Markov chains on Z

For each n let Y (n) t be a continuous time symmetric Markov chain with state space n −1 Z d. Conditions in terms of the conductances are given for the convergence of the Y (n) t to a symmetric Markov process Yt on R d. We have weak convergence of {Y (n) t : t ≤ t0} for every t0 and every starting point. The limit process Y has a continuous part and may also have jumps.

متن کامل

Entangled Markov Chains generated by Symmetric Channels

Abstract: A notion of entangled Markov chain was introduced by Accardi and Fidaleo in the context of quantum random walk. They proved that, in the finite dimensional case, the corresponding states have vanishing entropy density, but they did not prove that they are entangled. In the present note this entropy result is extended to the infinite dimensional case under the assumption of finite spee...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Convergence of symmetric Markov chains on Z d

For each n let Y n t be a continuous time symmetric Markov chain with state space n −1 Z d. A condition in terms of the conductances is given for the convergence of the Y n t to a symmetric Markov process Yt on R d. We have weak convergence of {Y n t : t ≤ t0} for every t0 and every starting point. The limit process Y has a continuous part and may also have jumps.

متن کامل

Symmetric Markov Chains on Z with Unbounded Range

We consider symmetric Markov chains on Zd where we do not assume that the conductance between two points must be zero if the points are far apart. Under a uniform second moment condition on the conductances, we obtain upper bounds on the transition probabilities, estimates for exit time probabilities, and certain lower bounds on the transition probabilities. We show that a uniform Harnack inequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1974

ISSN: 0091-1798

DOI: 10.1214/aop/1176996612