Swampland distance conjecture for one-parameter Calabi-Yau threefolds
نویسندگان
چکیده
منابع مشابه
The Modularity Conjecture for Calabi-Yau Threefolds
A Calabi-Yau variety, X, of dimension n, is defined to be a smooth projective variety over a field k that satisfies ωX := ∧n Ω ' OX and H(X,OX) = 0 for 0 < j < n. This can be seen as a higher dimensional “cohomological” analogue of an elliptic curve. A Calabi-Yau threefold is a Calabi-Yau variety of dimension three. The main goal of this paper is to introduce two equivalent notions of modularit...
متن کاملThe Modularity Conjecture for Rigid Calabi – Yau Threefolds over Q
: We formulate the modularity conjecture for rigid Calabi–Yau threefolds defined over the field Q of rational numbers. We establish the modularity for the rigid Calabi–Yau threefold arising from the root lattice A3. Our proof is based on geometric analysis. 1. The L–series of Calabi–Yau threefolds Let Q be the field of rational numbers, and let Q̄ be its algebraic closure with Galois group G := ...
متن کاملPrimitive Calabi-yau Threefolds
A Calabi-Yau threefold is a complex projective threefold X (possibly with some suitable class of singularities, say terminal or canonical) with ω X ∼ = O X and h 1 (O X) = h 2 (O X) = 0. One of the fundamental gaps in the classification of algebraic threefolds is the lack of understanding of Calabi-Yau threefolds. Here I will try to set forth a program to bring the morass of thousands of exampl...
متن کاملSome Calabi-yau Coverings over Singular Varieties and New Calabi-yau Threefolds with Picard Rank One
This paper is a report on the observation that some singular varieties admit Calabi-Yau coverings. We derive a formula for calculating the invariants of the coverings with degeneration methods. By applying these to Takagi’s Q -Fano examples([Ta1], [Ta2]), we construct several Calabi-Yau threefolds with Picard number one. It turns out that at least 22 of them are new.
متن کاملSome finiteness results for Calabi–Yau threefolds
We investigate the moduli theory of Calabi–Yau threefolds, and using Griffiths’ work on the period map, we derive some finiteness results. In particular, we confirm a prediction of Morrison’s Cone Conjecture.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2019
ISSN: 1029-8479
DOI: 10.1007/jhep08(2019)086