Suzuki-type fixed point theorem for fuzzy mappings in ordered metric spaces
نویسندگان
چکیده
منابع مشابه
FIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.
متن کاملA COMMON FIXED POINT THEOREM FOR SIX WEAKLY COMPATIBLE MAPPINGS IN M-FUZZY METRIC SPACES
In this paper, we give some new definitions of M-fuzzy metric spaces and we prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in complete M-fuzzy metric spaces.
متن کاملA common fixed point theorem on ordered metric spaces
A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.
متن کاملSuzuki-type fixed point results in fuzzy metric spaces
In this paper by using of Suzuki contraction , we prove a fixed point theorem in the set up of fuzzy metric spaces.We also show that, in some specific cases, the results reduce to Suzuki contraction in fuzzy metric spaces. Finally, one example is presented to verify the effectiveness and applicability of our main results.
متن کاملSOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES
In this paper, we introduce the notions of fuzzy $alpha$-Geraghty contraction type mapping and fuzzy $beta$-$varphi$-contractive mapping and establish some interesting results on the existence and uniqueness of fixed points for these two types of mappings in the setting of fuzzy metric spaces and non-Archimedean fuzzy metric spaces. The main results of our work generalize and extend some known ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2013
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2013-9