منابع مشابه
Finite simple groups as expanders.
We prove that there exist k in and 0 < epsilon in such that every non-abelian finite simple group G, which is not a Suzuki group, has a set of k generators for which the Cayley graph Cay(G; S) is an epsilon-expander.
متن کاملSymmetric Groups and Expanders
We construct an explicit generating sets Fn and F̃n of the alternating and the symmetric groups, which make the Cayley graphs C(Alt(n), Fn) and C(Sym(n), F̃n) a family of bounded degree expanders for all sufficiently large n. These expanders have many applications in the theory of random walks on groups and other areas of mathematics. A finite graph Γ is called an ǫ-expander for some ǫ ∈ (0, 1), ...
متن کاملSuzuki Groups and Surfaces
We show that the least genus of any compact Riemann surface S, admitting a simple Suzuki group G = Sz(^) as a group of automorphisms, is equal to 1 +|G|/40. We compute the number of such surfaces S as the number of normal subgroups of the triangle group A(2,4,5) with quotient-group G, and investigate the associated regular maps of type {4,5}.
متن کاملFinite Simple Groups of Lie Type as Expanders
are uniform expanders. Nikolov [N] proved that every classical group is a bounded product of SLn(q)’s (with possible n = 2, but the proof shows that if the Lie rank is sufficiently high, say ≥ 14, one can use SLn(q) with n ≥ 3). Bounded product of expander groups are uniform expanders. Thus together, their results cover all classical groups of high rank. So, our Theorem is new for classical gro...
متن کاملExpanders, Rank and Graphs of Groups
A central principle of this paper is that, for a finitely presented group G, the algebraic properties of its finite index subgroups should be reflected by the geometry of its finite quotients. These quotients can indeed be viewed as geometric objects, in the following way. If we pick a finite set of generators for G, these map to a generating set for any finite quotient and hence endow this quo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Groups, Geometry, and Dynamics
سال: 2011
ISSN: 1661-7207
DOI: 10.4171/ggd/128