Surjective maps preserving local spectral radius
نویسندگان
چکیده
منابع مشابه
Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras
Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.
متن کاملLinear Maps Preserving Numerical Radius of Tensor Products of Matrices
Let m,n ≥ 2 be positive integers. Denote by Mm the set of m×m complex matrices and by w(X) the numerical radius of a square matrix X. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map φ : Mmn →Mmn satisfies w(φ(A⊗B)) = w(A⊗B) for all A ∈Mm and B ∈Mn if and only if there is a unitary matrix U ∈Mmn and a complex unit ξ such that φ(A⊗B) = ξU(φ1(...
متن کاملMaps preserving the joint numerical radius distance of operators
Denote the joint numerical radius of an m-tuple of bounded operators A = (A1, . . . , Am) by w(A). We give a complete description of maps f satisfying w(A − B) = w(f(A) − f(B)) for any two m-tuples of operators A = (A1, . . . , Am) and B = (B1, . . . , Bm). We also characterize linear isometries for the joint numerical radius, and maps preserving the joint numerical range of A. AMS Classificati...
متن کاملSchur product of matrices and numerical radius (range) preserving maps
Let F (A) be the numerical range or the numerical radius of a square matrix A. Denote by A◦B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F (A ◦ B) = F (φ(A) ◦ φ(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices. 2000 Mathematics Subject Classification. 15A04, 15A18, 15A60
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematical Forum
سال: 2014
ISSN: 1314-7536
DOI: 10.12988/imf.2014.414