Surface Engineering and Patterning Using Parylene for Biological Applications
نویسندگان
چکیده
منابع مشابه
Surface Engineering and Patterning Using Parylene for Biological Applications
Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensor...
متن کاملpreparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
Reusable, reversibly sealable parylene membranes for cell and protein patterning.
The patterned deposition of cells and biomolecules on surfaces is a potentially useful tool for in vitro diagnostics, high-throughput screening, and tissue engineering. Here, we describe an inexpensive and potentially widely applicable micropatterning technique that uses reversible sealing of microfabricated parylene-C stencils on surfaces to enable surface patterning. Using these stencils it i...
متن کاملSurface Engineering of Multifunctional Nanocomposites for Biomedical Applications: a Brief Update
Context: In recent years, nanotechnology has opened up several new avenues of extraordinary biomedical potential by modulating metals into their nanosize leading to significant improvement in their chemical, physical and optical properties. Introduction: <span style="color...
متن کاملBiological Applications of Bacterial Nano-Surface Layers : A Brief Overview
Surface layer as the outer protective coverage of bacteria and archaea are two-dimensional crystalline and symmetrical arrays of proteins that recently attract a lot of attention for biologist scientists. The surface layers of bacteria are usually 5 to 10 nm in diameter and represent highly porous protein lattices with uniform size and morphology with the pore sizes of 2 to 8 nm. The crucial an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials
سال: 2010
ISSN: 1996-1944
DOI: 10.3390/ma3031803