Supramolecular hydrogelation via host-guest anion recognition: Lamellar hydrogel materials for the release of cationic cargo
نویسندگان
چکیده
•Lamellar hydrogels are formed utilizing host-guest anion recognition in water•Selective hydrogelation the presence of iodide or perchlorate was demonstrated•Macrocyclic receptor used as a low molecular weight hydrogelator•Hydrogels released choline derivatives via cation metathesis Hydrogel materials that utilize chemistry for their formation have been extensively investigated cationic and neutral guests successfully employed various fields life sciences. Host-guest has elusive this respect spite high importance anionic species biological systems environment. Such could potentially be smart release active pharmaceuticals harvesting toxic anions from water living systems. Here, we demonstrated hydrogel recognition. Using “decade-old” bambus[6]uril, were selectively anions. The presented understanding structure exploitation dynamic features vitro will help develop biomedical environmental applications. Hydrogelation triggered by is difficult to achieve due challenging de novo gelator design. Herein, report such system, based on bambus[6]uril receptor, BU. Albeit not per se, BU iodides perchlorates. Anion governed hydrogelation, indicated NMR, ATR-IR, single-crystal X-ray. Gelation mechanism lamellar nature network elucidated SAXS, cryoSEM, holotomography methods. Rheological characterization revealed stable relatively strong. In physiological saline solutions, cargo metathesis, leading gel-to-gel transformation. Choline derivatives, model drugs, exhibited slow hydrogels. Our simple system may inspire design recognition, where sequestration specific charged desirable. Supramolecular hydrogels1Estroff L.A. Hamilton A.D. Water gelation small organic molecules.Chem. Rev. 2004; 104: 1201-1218https://doi.org/10.1021/cr0302049Crossref PubMed Scopus (1814) Google Scholar, 2Weiss R.G. past, present, future gels. What status field, it going?.J. Am. Chem. Soc. 2014; 136: 7519-7530https://doi.org/10.1021/ja503363vCrossref (527) 3Draper E.R. Adams D.J. Low-molecular-weight gels: state art.Chem. 2017; 3: 390-410https://doi.org/10.1016/j.chempr.2017.07.012Abstract Full Text PDF (356) 4Steed J.W. gel chemistry: developments over last decade.Chem. Commun. (Camb.). 2011; 47: 1379-1383https://doi.org/10.1039/C0CC03293JCrossref Scholar possess immense potential applications materials,5Du X. Zhou J. Shi Xu B. hydrogelators hydrogels: From soft matter biomaterials.Chem. 2015; 115: 13165-13307https://doi.org/10.1021/acs.chemrev.5b00299Crossref (1224) 6Calvert P. Hydrogels machines.Adv. Mater. 2009; 21: 743-756https://doi.org/10.1002/adma.200800534Crossref (818) 7Buwalda S.J. Boere K.W.M. Dijkstra P.J. Feijen Vermonden T. Hennink W.E. historical perspective: networks materials.J. Control. Release. 190: 254-273https://doi.org/10.1016/j.jconrel.2014.03.052Crossref (560) 8Chakraborty Das S. Nandi A.K. Conducting chronicle technological advances.Prog. Polym. Sci. 2019; 88: 189-219https://doi.org/10.1016/j.progpolymsci.2018.08.004Crossref (25) 9Yuan D. Heterotypic supramolecular hydrogels.J. 2016; 4: 5638-5649https://doi.org/10.1039/C6TB01592ACrossref environmental,10Okesola B.O. Smith D.K. Applying low-molecular gelators an setting – self-assembled gels pollutant removal.Chem. 45: 4226-4251https://doi.org/10.1039/C6CS00124FCrossref Scholar,11Wang H. Ji Ahmed M. Huang F. Sessler J.L. removal water.J. A. 7: 1394-1403https://doi.org/10.1039/C8TA10286DCrossref medicinal chemistry,12Ulijn R.V. Bibi N. Jayawarna V. Thornton P.D. Todd Mart R.J. A.M. Gough J.E. Bioresponsive hydrogels.Mater. Today. 2007; 10: 40-48https://doi.org/10.1016/S1369-7021(07)70049-4Crossref (413) 13Dong R. Pang Y. Su Zhu synthesis, properties applications.Biomater. 937-954https://doi.org/10.1039/C4BM00448ECrossref 14Foster J.A. Piepenbrock M.O. Lloyd G.O. Clarke Howard J.A.K. Steed Anion-switchable controlling pharmaceutical crystal growth.Nat. 2010; 2: 1037-1043https://doi.org/10.1038/nchem.859Crossref (255) with substantial interest controlled drug delivery systems.15Slaughter B.V. Khurshid S.S. Fisher O.Z. Khademhosseini Peppas N.A. regenerative medicine.Adv. 3307-3329https://doi.org/10.1002/adma.200802106Crossref (2037) 16Mayr Saldías C. Díaz Release bioactive molecules physical gels.Chem. 2018; 1484-1515https://doi.org/10.1039/C7CS00515FCrossref 17Saboktakin M.R. Tabatabaei R.M. systems.Int. Biol. Macromol. 75: 426-436https://doi.org/10.1016/j.ijbiomac.2015.02.006Crossref (73) 18Zelikin A.N. Ehrhardt Healy Materials methods drugs.Nat. 8: 997-1007https://doi.org/10.1038/nchem.2629Crossref (201) Owing reversible interactions within gel, respond chemical stimuli,19Yang Zhang G. Stimuli responsive gelators.J. 2012; 22: 38-50https://doi.org/10.1039/C1JM13205ACrossref 20Hoque Sangaj Varghese Stimuli-responsive medicine.Macromol. Biosci. 19: e1800259https://doi.org/10.1002/mabi.201800259Crossref (91) 21Draper Photoresponsive gelators.Chem. (Camb). 52: 8196-8206https://doi.org/10.1039/C6CC03485CCrossref 22Tomatsu I. Peng K. Kros applications.Adv. Drug Deliv. 63: 1257-1266https://doi.org/10.1016/j.addr.2011.06.009Crossref (393) 23Segarra-Maset M.D. Nebot V.J. Miravet J.F. Escuder Control stimuli.Chem. 2013; 42: 7086-7098https://doi.org/10.1039/C2CS35436ECrossref especially appealing cases anions24Maeda Anion-responsive gels.Chemistry. 2008; 14: 11274-11282https://doi.org/10.1002/chem.200801333Crossref (269) 25Lloyd Anion-tuning properties.Nat. 1: 437-442https://doi.org/10.1038/nchem.283Crossref (357) 26Piepenbrock Metal- anion-binding 110: 1960-2004https://doi.org/10.1021/cr9003067Crossref (1039) 27Peters G.M. Skala L.P. Plank T.N. Hyman B.J. Manjunatha Reddy G.N. Marsh Brown S.P. Davis J.T. A G4·K+ stabilized anion.J. 12596-12599https://doi.org/10.1021/ja507506cCrossref (127) 28Yang Z. Gu Wang L. Small molecule class antiinflammatory agents.Chem. 208: 208-209https://doi.org/10.1039/b310574aCrossref (208) 29Busschaert Caltagirone Van Rossom W. Gale P.A. Applications recognition.Chem. 8038-8155https://doi.org/10.1021/acs.chemrev.5b00099Crossref (868) 30Chen Berry S.N. Wu Howe E.N.W. Advances chemistry.Chem. 2020; 6: 61-141https://doi.org/10.1016/j.chempr.2019.12.002Abstract (114) (macro)molecules,31Yang enzymes control hydrogelation.Adv. 2006; 18: 3043-3046https://doi.org/10.1002/adma.200600400Crossref (75) Scholar,32Yang Liang Enzymatic molecules.Acc. Res. 41: 315-326https://doi.org/10.1021/ar7001914Crossref (570) However, anion-responsive systems,24Maeda usually exploited means breaking competing modulating gel. anion-induced otherwise non-gelling rarely reported. handful examples include Fmoc-amino acid mixed system,28Yang proline-functionalized calix[4]arene,33Becker Yong Goh Jones McIldowie M.J. Mocerino Ogden M.I. Proline-functionalised calix[4]arene: anion-triggered hydrogelator.Chem. 3900: 3900-3902https://doi.org/10.1039/b807248eCrossref (37) isoquinoline derivative,34Karmakar Sarma Baruah J.B. Structural aspects salt inclusion compounds 8-hydroxyquinoline amides.CrystEngComm. 9: 379https://doi.org/10.1039/b700701aCrossref (22) melamine,35Shen J.S. Cai Q.G. Jiang Y.B. H.W. Anion-triggered melamine self-assembly hydrogel.Chem. 46: 6786-6788https://doi.org/10.1039/c0cc02030cCrossref (66) uracil-urea.36Kleinsmann A.J. Weckenmann N.M. Nachtsheim Phosphate-triggered N -[(uracil-5-yl)methyl]urea: minimalistic urea-derived hydrogelator.Chemistry. 20: 9753-9761https://doi.org/10.1002/chem.201402916Crossref (12) Also worth mentioning pyridine-amino derivative,37Basak Banerjee Selective binding hydrogen chloride its trapping through gelation.Chem. 50: 6917-6919https://doi.org/10.1039/c4cc02300eCrossref (18) albeit gelling mixed-solvent (80% water/ethanol). all these cases, (de)protonation rather than governs process, some instances33Becker rationalized terms kosmotropic chaotropic38Assaf K.I. Nau W.M. chaotropic effect assembly motif chemistry.Angew. Int. Ed. Engl. 57: 13968-13981https://doi.org/10.1002/anie.201804597Crossref (145) Scholar,39Marcus Effect ions water: making breaking.Chem. 109: 1346-1370https://doi.org/10.1021/cr8003828Crossref (1284) water40Kubik water.Chem. 39: 3648-3663https://doi.org/10.1039/b926166bCrossref (414) Scholar,41Langton Serpell C.J. Beer recent advances macromolecular perspective.Angew. 55: 1974-1987https://doi.org/10.1002/anie.201506589Crossref (299) design42Dastidar agents: can they designed?.Chem. 37: 2699-2715https://doi.org/10.1039/b807346eCrossref (666) Scholar,43van Esch J.H. We gelators, but do understand them?.Langmuir. 25: 8392-8394https://doi.org/10.1021/la901720aCrossref (202) topics. Likely facts, reported literature. respect, multi-component systems9Yuan Scholar,44Raeburn Multicomponent 51: 5170-5180https://doi.org/10.1039/C4CC08626KCrossref 45Buerkle L.E. Rowan species.Chem. 6089-6102https://doi.org/10.1039/c2cs35106dCrossref (568) 46Draper How should multicomponent characterised?.Chem. 3395-3405https://doi.org/10.1039/C7CS00804JCrossref employing, example, blending47Foster Edkins Cameron G.J. Colgin Fucke Ridgeway Crawford A.G. Marder T.B. Beeby Cobb S.L. Blending tune probe disassembly.Chemistry. 279-291https://doi.org/10.1002/chem.201303153Crossref (68) polymers48Silver E.S. Rambo B.M. Bielawski C.W. Reversible cross-linking well-defined calix[4]pyrrole-containing copolymers.J. 2252-2255https://doi.org/10.1021/ja4123895Crossref (43) present perspective approaches future. Macrocyclic incorporated into functional gels49Foster Exploiting cavities gels.Angew. 49: 6718-6724https://doi.org/10.1002/anie.201000070Crossref (143) 50Qi Schalley C.A. Exploring macrocycles stimuli responsiveness chemistry.Acc. 2222-2233https://doi.org/10.1021/ar500193zCrossref (232) 51Dong Zheng polymers constructed macrocycle-based motifs.Acc. 1982-1994https://doi.org/10.1021/ar5000456Crossref (442) 52Xiao Sun X.Q. Lin Dynamic mediated macrocyclic host–guest interactions.J. 1526-1540https://doi.org/10.1039/C8TB02339ECrossref 53Goh C.Y. gelators.Supramol. 555-566https://doi.org/10.1080/10610278.2013.830723Crossref (8) because regularly act selective hosts species.41Langton Scholar,54He Q. Vargas-Zúñiga G.I. Kim S.H. S.K. Macrocycles ion pair receptors.Chem. 119: 9753-9835https://doi.org/10.1021/acs.chemrev.8b00734Crossref Scholar,55Cai Neutral CH donor groups 43: 6198-6213https://doi.org/10.1039/C4CS00115JCrossref These engender stimuli-responsive features,51Dong important investigating materials6Calvert chemistry.56Ludlow R.F. Otto Systems 101-108https://doi.org/10.1039/B611921MCrossref Scholar,57Qi Malo Molina Nowosinski Schulz Gradzielski logic gates gel–sol transition crown ether-functionalized bis(urea) gelator.Chem. 2073https://doi.org/10.1039/c2sc01018fCrossref (118) vast majority receptors molecules.49Foster Scholar,58Hwang Jeon W.S. H.J. Selvapalam Fujita Shinkai Cucurbit[7]uril: macrocyclic, pH-triggered hydrogelator exhibiting guest-induced behavior.Angew. 210-213https://doi.org/10.1002/anie.200603149Crossref (191) Scholar,59Appel E.A. Loh X.J. S.T. Biedermann Dreiss Scherman O.A. Ultrahigh-water-content multistimuli responsiveness.J. 134: 11767-11773https://doi.org/10.1021/ja3044568Crossref (365) very manner exclusively attached polymeric molecules. Only single example reported, namely, calix[4]pyrroles anion-cross-linked organogels.48Silver Other closely related association self-complementary hosts, which associate form weight, solvents.60Yuvayapan Aydogan Counter dependent calix[4]pyrrole interactions: counter interactions.Eur. Org. 2019: 633-639https://doi.org/10.1002/ejoc.201801663Crossref (11) Scholar,61Amharar Yuvayapan thermoresponsive polymer heteroditopic calix[4]pyrrole.Chem. 54: 829-832https://doi.org/10.1039/c7cc08607eCrossref (14) It evident heavily underexplored gels, utilized only require concentrations unprecedented simple, small-molecule, water-gelling agents. bambusuril variety analytical methods, undoubtedly show driving force strong hydrogels, exhibit network. demonstrate cations exchange solution use component-exchange feature facilitate at NaCl concentrations. composed dodecamethylbambus[6]uril receptor62Svec Necas Sindelar Bambus[6]uril.Angew. 2378-2381https://doi.org/10.1002/anie.201000420Crossref (185) Scholar,63Svec Dusek Fejfarova Stacko Klán Kaifer A.E. Li Hudeckova E. Anion-free Bambus[6]uril properties.Chemistry. 17: 5605-5612https://doi.org/10.1002/chem.201003683Crossref (76) (BU) (or perchlorate) salts (Figure 1). prepared shortly sonicating insoluble BU, 1% 5% (≈ 10 50 mM) aqueous 100 mM, respectively (see supplemental information details). Various (in)organic bio-relevant salts, including Li, Na, K, ammonium, tetramethylammonium (TMA), (Ch), acetylcholine (AcCh), minimum concentration found ≈ 0.8% 8 mM salt. Higher (> 200 resulted viscous material, turn increasing content 5%. Lower (< 30 mM), however, did lead regardless content. translucent opaque (Figures 1 S24), self-supporting (up 99% water) absence flow upon vial inversion. Most many months ambient temperature closed vial. TMA, AcCh tending precipitate days months, depending composition Due greater significance, focus investigations herein iodide-derived perchlorate. Bambusurils known bind center cavity.62Svec Thus, assumed type would substantially influence encapsulated Yet, observed (Table S1). other sodium (i.e., Cl−, Br−, BF4−, PF6−, NO3−, IO4−) formation. suspected ability induce affinities toward bambusurils water.64Yawer M.A. Havel Bambusuril macrocycle binds affinity selectivity.Angew. 276-279https://doi.org/10.1002/anie.201409895Crossref (151) result solubilization water-insoluble Therefore, assessed quantity dissolved complexed different D2O 1H NMR spectroscopy. Iodide showed proportional linear increase S25–S32). data, 1:1 constant complexes determined 1.7 × 103 1.3 M−1, S3). contrast, (Cl−, poor also indicating weak S2). up 0.3 salts. This amount NaI NaClO4 dissolve mM. case NaCl, no detected solution, chlorides bound water. differences between strongly suggest dissolution complexation step formation, agreement selectivity. Although stoichiometry, solid-state differ solution. salt:BU ratio) was, therefore, NMR. comprising ChI, AcChI, TMAI placed 10, 20, 30, 60 min. Then surrounding removed, completely 50-mM D2O/CD3CN, cation:BU ratio Slower diffusion expected comparison entrapped liquid phase 2). time spent D2O, remaining salt/BU indicative composition. experiment suggested network, further supporting frequently BU.62Svec P
منابع مشابه
Supramolecular hydrogel microcapsules via cucurbit[8]uril host-guest interactions with triggered and UV-controlled molecular permeability.
Host-guest assembly in droplet-based microfluidics opens a new avenue for fabricating supramolecular hydrogel microcapsules with high monodispersity and controlled functionality. In this paper, we demonstrate a single emulsion microdroplet platform to prepare microcapsules with supramolecular hydrogel skins from host molecule cucurbit[8]uril and guest polymer anthracene-functionalized hydroxyet...
متن کاملReversible guest exchange mechanisms in supramolecular host-guest assemblies.
Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characteri...
متن کاملHybrid host-guest complexes: directing the supramolecular structure through secondary host-guest interactions.
A set of four hybrid host-guest complexes based on the inorganic crown ether analogue [H12W36O120]12- ({W36}) have been isolated and characterised. The cluster anion features a central rigid binding site made up of six terminal oxygen ligands and this motif allows the selective binding of a range of alkali and alkali-earth-metal cations. Here, the binding site was utilised to functionalise the ...
متن کاملSupramolecular recognition: on the kinetic lability of thermodynamically stable host-guest association complexes.
A molecular receptor consisting of a spacer bearing two cofacially disposed terpyridyl-palladium-ligand (terpy-Pd-L) units rigidly separated by about 7 A has been investigated for molecular recognition of planar aromatic molecules. It is found that although the receptor forms stable 1:2 host-guest association complexes with 9-methylanthracene (9-MA), the guest undergoes very rapid site exchange...
متن کاملSupramolecular colloidosomes: fabrication, characterisation and triggered release of cargo.
We report a one-step method of assembling supramolecular colloidosomes at the interface of microfluidic droplets. The self-assembly process utilises a versatile CB[8] host-guest system to reversibly crosslink polystyrene nanoparticles via a polyacrylamide linker. These micrometre-sized hollow structures can be loaded with water-soluble cargo during formation, which can then undergo triggered re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2021
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2021.06.024