Support Theorems for the Radon Transform and Cramér-Wold Theorems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support theorems for the Radon transform and Cramér-Wold theorems

This article presents extensions of the Cramér-Wold theorem to measures that may have infinite mass near the origin. Corresponding results for sequences of measures are presented together with examples showing that the assumptions imposed are sharp. The extensions build on a number of results and methods concerned with injectivity properties of the Radon transform. Using a few tools from distri...

متن کامل

New Range Theorems for the Dual Radon Transform

Three new range theorems are established for the dual Radon transform R∗: on C∞ functions that do not decay fast at infinity (and admit an asymptotic expansion), on S(Zn), and on C∞ 0 (Zn). Here Zn := Sn−1×R, and R∗ acts on even functions μ(α, p) = μ(−α,−p), (α, p) ∈ Zn.

متن کامل

Lusin type theorems for Radon measures

We add to the literature the following observation. If μ is a singular measure on R which assigns measure zero to every porous set and f : R → R is a Lipschitz function which is non-differentiable μ-a.e., then for every C function g : R → R it holds μ{x ∈ Rn : f(x) = g(x)} = 0. In other words the Lusin type approximation property of Lipschitz functions with C functions does not hold with respec...

متن کامل

Paley–wiener Theorems for the Dunkl Transform

We conjecture a geometrical form of the Paley–Wiener theorem for the Dunkl transform and prove three instances thereof, by using a reduction to the one-dimensional even case, shift operators, and a limit transition from Opdam’s results for the graded Hecke algebra, respectively. These Paley– Wiener theorems are used to extend Dunkl’s intertwining operator to arbitrary smooth functions. Furtherm...

متن کامل

The Zak transform and sampling theorems for wavelet subspaces

The Zak transform is used for generalizing a sampling theorem of G. Walter for wavelet subspaces. Cardinal series based on signal samples f(a + n), n E 2 with a possibly unequal to 0 (Walter’s case) are considered. The condition number of the sampling operator and worst-case aliasing errors are expressed in terms of Zak transforms of scaling function and wavelet. This shows that the stability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2008

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-008-0151-0