Supervised classification methods for flash X-ray single particle diffraction imaging
نویسندگان
چکیده
منابع مشابه
Single particle X-ray diffractive imaging.
In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage thre...
متن کاملAutomated identification and classification of single particle serial femtosecond X-ray diffraction data.
The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by t...
متن کاملDiffraction enhanced x-ray imaging.
Diffraction enhanced imaging is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantom. The contrast is based not only on attenuation but also the refraction and diffraction proper...
متن کاملOrientation determination in single-particle x-ray coherent diffraction imaging experiments
Single-particle diffraction imaging experiments at free-electron lasers (FELs) have a great potential for the structure determination of reproducible biological specimens that cannot be crystallized. One of the challenges in processing the data from such an experiment is to determine the correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose a...
متن کاملImaging whole Escherichia coli bacteria by using single-particle x-ray diffraction.
We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 A. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2019
ISSN: 1094-4087
DOI: 10.1364/oe.27.003884