Superprimes and a generalized Frobenius symbol

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on generalized Frobenius numbers

Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers. The Frobenius number of this N -tuple is defined to be the largest positive integer that has no representation as PN i=1 aixi where x1, ..., xN are nonnegative integers. More generally, the s-Frobenius number is defined to be the largest positive integer that has precisely s distinct representations like this. We use techniques...

متن کامل

Generalized Weierstrass Relations and Frobenius Reciprocity

This article investigates local properties of the further generalized Weierstrass relations for a spin manifold S immersed in a higher dimensional spin manifold M from viewpoint of study of submanifold quantum mechanics. We show that kernel of a certain Dirac operator defined over S, which we called submanifold Dirac operator, gives the data of the immersion. In the derivation, the simple Frobe...

متن کامل

Congruence Subgroups and Generalized Frobenius-schur Indicators

We define generalized Frobenius-Schur indicators for objects in a linear pivotal category C. An equivariant indicator of an object is defined as a functional on the Grothendieck algebra of the quantum double Z(C) of C using the values of the generalized Frobenius-Schur indicators. In a spherical fusion category C with Frobenius-Schur exponent N , we prove that the set of all equivariant indicat...

متن کامل

Generalized Frobenius Numbers: Bounds and Average Behavior

Let n ≥ 2 and s ≥ 1 be integers and a = (a1, . . . , an) be a relatively prime integer n-tuple. The s-Frobenius number of this ntuple, Fs(a), is defined to be the largest positive integer that cannot be represented as ∑n i=1 aixi in at least s different ways, where x1, ..., xn are non-negative integers. This natural generalization of the classical Frobenius number, F1(a), has been studied recen...

متن کامل

Generalized Perron-Frobenius Theorem for Nonsquare Matrices

The celebrated Perron–Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1977

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-32-3-209-232