Superposition and mimicking theorems for conditional McKean–Vlasov equations
نویسندگان
چکیده
We consider conditional McKean–Vlasov stochastic differential equations (SDEs), as the ones arising in large-system limit of mean field games and particle systems with interactions when common noise is present. The time-marginals solutions to these SDEs are governed by non-linear partial (SPDEs) second order, whereas their laws satisfy Fokker–Planck on space probability measures. Our paper establishes two superposition principles: first asserts that any solution SPDE can be lifted a SDE, guarantees equation measures SPDE. use results obtain mimicking theorem which shows an Itô process emulated those SDE Markovian coefficients. This yields, particular, tool for converting open-loop controls into context controlled dynamics.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Central Limit Theorems for Conditional Markov Chains
This paper studies Central Limit Theorems for real-valued functionals of Conditional Markov Chains. Using a classical result by Dobrushin (1956) for non-stationary Markov chains, a conditional Central Limit Theorem for fixed sequences of observations is established. The asymptotic variance can be estimated by resampling the latent states conditional on the observations. If the conditional means...
متن کاملConditional limit theorems for ordered random walks
In a recent paper of Eichelsbacher and König (2008) the model of ordered random walks has been considered. There it has been shown that, under certain moment conditions, one can construct a k-dimensional random walk conditioned to stay in a strict order at all times. Moreover, they have shown that the rescaled random walk converges to the Dyson Brownian motion. In the present paper we find the ...
متن کاملLinear superposition in nonlinear equations.
Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of so...
متن کاملSuperposition in nonlinear wave and evolution equations
As has been shown recently [Cooper et al. 2002], [Khare et al. 2002a], [Khare et al. 2003], [Khare et al. 2002b] (periodic) Jacobian elliptic functions (if they are solutions of a certain nonlinear wave and evolution equation (NLWEE)) are start solutions for generating new solutions of the NLWEE by a linear superposition procedure. Thus, elliptic functions are of specific importance for finding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2022
ISSN: ['1435-9855', '1435-9863']
DOI: https://doi.org/10.4171/jems/1266