Supermodular covering knapsack polytope

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supermodular covering knapsack polytope

The supermodular covering knapsack set is the discrete upper level set of a non-decreasing supermodular function. Submodular and supermodular knapsack sets arise naturally when modeling utilities, risk and probabilistic constraints on discrete variables. In a recent paper Atamtürk and Narayanan [6] study the lower level set of a non-decreasing submodular function. In this complementary paper we...

متن کامل

Forthcoming in Discrete Optimization SUPERMODULAR COVERING KNAPSACK POLYTOPE

The supermodular covering knapsack set is the discrete upper level set of a non-decreasing supermodular function. Submodular and supermodular knapsack sets arise naturally when modeling utilities, risk and probabilistic constraints on discrete variables. In a recent paper Atamtürk and Narayanan [6] study the lower level set of a non-decreasing submodular function. In this complementary paper we...

متن کامل

The Sequential Knapsack Polytope

In this paper we describe the convex hull of all solutions of the integer bounded knapsack problem in the special case when the weights of the items are divisible. The corresponding inequalities are deened via an inductive scheme that can also be used in a more general setting.

متن کامل

The submodular knapsack polytope

The submodular knapsack set is the discrete lower level set of a submodular function. The modular case reduces to the classical linear 0-1 knapsack set. One motivation for studying the submodular knapsack polytope is to address 0-1 programming problems with uncertain coefficients. Under various assumptions, a probabilistic constraint on 0-1 variables can be modeled as a submodular knapsack set....

متن کامل

Covering symmetric supermodular functions by uniform hypergraphs

We consider the problem of finding a uniform hypergraph that satisfies cut demands defined by a symmetric crossing supermodular set function. We give min-max formulas for both the degree specified and the minimum cardinality problem. These results include as a special case a formula on the minimum number of r-hyperedges whose addition to an initial hypergraph will make it k-edge-connected.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Optimization

سال: 2015

ISSN: 1572-5286

DOI: 10.1016/j.disopt.2015.07.003