Summarizing Nursery School Surveillance Videos by Distance Metric Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summarizing Nursery School Surveillance Videos by Distance Metric Learning

We propose a novel video summarization approach that takes the mass quantity of nursery school surveillance videos as input and produces short daily video digests for children. The proposed approach makes full use of a distance metric, which is learned using a novel learning algorithm called the adaptive large margin nearest neighbor (ALMNN), and can properly measure the similarity between vide...

متن کامل

Distance metric learning by minimal distance maximization

Classic linear dimensionality reduction (LDR) methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are known not to be robust against outliers. Following a systematic analysis of the multi-class LDR problem in a unified framework, we propose a new algorithm, called minimal distance maximization (MDM), to address the non-robustness issue. The principle behi...

متن کامل

Distance metric learning by knowledge embedding

This paper presents an algorithm which learns a distance metric from a data set by knowledge embedding and uses the new distance metric to solve nonlinear pattern recognition problems such a clustering. ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

متن کامل

Bayesian Distance Metric Learning

This thesis explores the use of Bayesian distance metric learning (Bayes-dml) for the task of speaker verification using the i-vector feature representation. We propose a framework that explores the distance constraints between i-vector pairs from the same speaker and different speakers. With an approximation of the distance metric as a weighted covariance matrix of the top eigenvectors from th...

متن کامل

Distance Metric Learning Revisited

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information Processing

سال: 2014

ISSN: 1882-6652

DOI: 10.2197/ipsjjip.22.56