Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16
نویسندگان
چکیده
منابع مشابه
Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16.
Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed th...
متن کاملTranscriptional regulation of nitric oxide reduction in Ralstonia eutropha H16.
Nitric oxide reduction in Ralstonia eutropha H16 is catalysed by the quinol-dependent NO reductase NorB. norB and the adjacent norA form an operon that is controlled by the sigma(54)-dependent transcriptional activator NorR in response to NO. A NorR derivative containing MalE in place of the N-terminal domain binds to a 73 bp region upstream of norA that includes three copies of the putative up...
متن کاملEssential role of the hprK gene in Ralstonia eutropha H16.
Ralstonia eutropha H16 possesses an incomplete phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS) composed of EI, HPr, EIIA(Ntr) (PtsN) and EIIA(Man) (PtsM). We could show that in vitro the incomplete PTS phosphorylation cascade is partially functional. HPr becomes phosphorylated by PEP and EI, and transfers the phosphoryl group to EIIA(Ntr), but only extremely slowly to EIIA(Man)....
متن کاملGenomic view of energy metabolism in Ralstonia eutropha H16.
Ralstonia eutropha is a strictly respiratory facultative lithoautotrophic beta-proteobacterium. In the absence of organic substrates, H2 and CO2 are used as sole sources of energy and carbon. In the absence of oxygen, the organism can respire by denitrification. The recent determination of the complete genome sequence of strain H16 provides the opportunity to reconcile the results of previous p...
متن کاملRalstonia eutropha H16 encodes two and possibly three intracellular Poly[D-(-)-3-hydroxybutyrate] depolymerase genes.
Intracellular poly[D-(-)-3-hydroxybutyrate] (PHB) depolymerases degrade PHB granules to oligomers and monomers of 3-hydroxybutyric acid. Recently an intracellular PHB depolymerase gene (phaZ1) from Ralstonia eutropha was identified. We now report identification of candidate PHB depolymerase genes from R. eutropha, namely, phaZ2 and phaZ3, and their characterization in vivo. phaZ1 was used to id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Environmental Microbiology
سال: 2016
ISSN: 0099-2240,1098-5336
DOI: 10.1128/aem.02568-15