Subsets of rectifiable curves in Banach spaces II: Universal estimates for almost flat arcs

نویسندگان

چکیده

We prove that in any Banach space, the set of windows which a rectifiable curve resembles two or more straight line segments is quantitatively small with constants are independent curve, dimension and choice norm. Together Part I (also published this issue), completes proof necessary half analyst’s traveling salesman theorem sharp exponent uniformly convex spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unions of Rectifiable Curves and the Dimension of Banach Spaces

To any metric space it is possible to associate the cardinal invariant corresponding to the least number of rectifiable curves in the space whose union is not meagre. It is shown that this invariant can vary with the metric space considered, even when restricted to the class of convex subspaces of separable Banach spaces. As a corollary it is obtained that it is consistent with set theory that ...

متن کامل

Complementably Universal Banach Spaces, Ii

The two main results are: A. If a Banach space X is complementably universal for all subspaces of c0 which have the bounded approximation property, then X∗ is non separable (and hence X does not embed into c0), B. There is no separable Banach space X such that every compact operator (between Banach spaces) factors through X. Theorem B solves a problem that dates from the 1970s.

متن کامل

Subsets of Rectifiable curves in Hilbert Space-The Analyst’s TSP

We study one dimensional sets (Hausdorff dimension) lying in a Hilbert space. The aim is to classify subsets of Hilbert spaces that are contained in a connected set of finite Hausdorff length. We do so by extending and improving results of Peter Jones and Kate Okikiolu for sets in Rd . Their results formed the basis of quantitative rectifiability in Rd . We prove a quantitative version of the f...

متن کامل

Girths and Flat Banach Spaces

J. J. Schâffer [3] introduced an interesting parameter for normed linear spaces. It is termed girth and is the infimum of the lengths of all centrally symmetric simple closed rectifiable curves which lie in the boundary of the unit ball. More precisely, let X be a Banach space with norm denoted by || -|| and with dim X^2. K curve in X will be a rectifiable geometric curve defined by Busemann [l...

متن کامل

On Weakly Compact Subsets of Banach Spaces

Introduction. The two sections of this note are independent, but they are related by the fact that both use the results of [5 ] to obtain information on the properties of weakly compact sets in Banach spaces. In the first section we prove some results on a class of compact sets which is believed to include all weakly compact subsets of Banach spaces. We are interested in the properties of the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2023

ISSN: ['1945-6581', '0019-2082']

DOI: https://doi.org/10.1215/00192082-10592390