Subsequence numbers and logarithmic concavity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Concavity and SI2(C)

We observe that for any logarithmically concave nite sequence a 0 , a 1 , : : : , a n of positive integers there is a representation of the Lie algebra sl 2 (C) from which this logarithmic concav-ity follows. Thus, in applying this strategy to prove logarithmic concavity, the only issue is to construct such a representation naturally from given combinatorial data. As an example, we do this when...

متن کامل

h-Vectors of matroids and logarithmic concavity

Article history: Received 11 November 2012 Accepted 4 November 2014 Available online 13 November 2014 Communicated by Ezra Miller MSC: 05B35 52C35

متن کامل

Bell Numbers, Log-concavity, and Log-convexity

Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...

متن کامل

Prime Numbers in Logarithmic Intervals

Let X be a large parameter. We will first give a new estimate for the integral moments of primes in short intervals of the type (p, p+ h], where p ≤ X is a prime number and h = o(X). Then we will apply this to prove that for every λ > 1/2 there exists a positive proportion of primes p ≤ X such that the interval (p, p+λ logX] contains at least a prime number. As a consequence we improve Cheer an...

متن کامل

Log-concavity of Stirling Numbers and Unimodality of Stirling Distributions

A series of inequalities involving Stirling numbers of the first and second kinds with adjacent indices are obtained. Some of them show log-concavity of Stirling numbers in three different directions. The inequalities are used to prove unimodality or strong unimodality of all the subfamilies of Stirling probability functions. Some additional applications are also presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1976

ISSN: 0012-365X

DOI: 10.1016/0012-365x(76)90140-0